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Abstract 
 
 Although helical magnetic flux compression generators 
(HFCGs) have been in use for more than four decades, no 
one has been able to satisfactorily model their behavior. 
To bring computed currents into agreement with 
experimental values, tuning factors or anomalous flux loss 
factors are used. Such factors are not universal, and they 
must be adjusted for each generator design, or for 
different operational parameters (e.g., seed current or load 
inductance) for a given design. Many HFCG modeling 
codes have been reported over the years with various 
types of these empirical factors. 
 One of the recognized issues for HFCGs is magnetic 
flux loss near the moving contact point between 
expanding armature and helical stator coil winding.  In 
our new model, we have analytically estimated the rate of 
magnetic field diffusion in the vicinity of the contact 
point. When converted to a flux loss rate, we find that it 
usually scales nonlinearly with the instantaneous current, 
and that the resulting effective resistance is proportional 
to the square root of the current. This result applies even 
at relatively small operating currents. Whereas the usual 
HFCG resistances drop as the generator length decreases, 
the contact resistance generally increases throughout 
operation. While small initially, we find that it usually 
dominates late in time and ultimately limits the gain of 
most generators. 
 In this paper, we present the derivation of the contact 
resistance model and show its effectiveness in estimating 
current gain for simple HFCG designs using a simple 
spreadsheet program. The model has also been 
implemented in the 1½-D FCG-model code, CAGEN, and 
an accompanying paper presents CAGEN results for a 
wide range of HFCGs, benchmarking the new model. The 
formulation for our model is universal; i.e., there are no 
adjustable factors, and it has generally enabled calculation 
of HFCG currents to within 20% of experimentally 
reported values. 

 
 

I. INTRODUCTION 
 
A. Helical Flux Compression Generators 

Helical magnetic flux compression generators (HFCGs) 
have been in use for almost 50 years. They consist of two 
main components, a helical coil usually made from round-
cross-section wire ("stator"), and an interior coaxial 
conducting cylinder ("armature") filled with high 
explosive (HE). The armature HE is typically detonated at 
one end, causing the armature to expand in a cone shape 
as the detonation wave proceeds down the axis. Current 
runs through the stator to an attached load and returns 
through the armature. Fig. 1 is a two-dimensional 
representation of a variable-pitch HFCG that shows 
magnetic streamlines for the initial state (upper) and later 
(lower) state, when the expanding armature makes contact 
with the stator. The generator initial inductance can be 
quite high, due to the flux lines linking almost all of the 
turns. As the generator functions, the moving contact 
point sweeps the flux ahead, removing the linkages and 
decreasing the effective inductance. 
 For modeling purposes, the FCG and its load are often 
approximated by a lumped-element circuit, such as shown 
in Fig. 2. Here, the FCG appears as a time-varying 
inductance and resistance. The circuit is initially charged 
with current, I0, or "seed current," by a separate circuit, 
which is not shown. The time-varying inductance can be 
approximated by one of several techniques. The resistance 
should, in general, include diffusion effects (nonlinear, 
when the currents get large) and proximity effects, i.e., 
increase in resistance associated with non-uniform 
magnetic field distribution around each wire. 
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Figure 1.  Two-dimensional representation of a variable-
pitch HFCG showing magnetic streamlines. Initial 
configuration (upper) at time t0 when detonation begins; 
configuration just as armature makes contact with stator 
(lower) at time t1. 
 

 
Figure 2.  Schematic diagram for the equivalent circuit 
for an FCG and its load. 
 
B. The Generator Equation 
 Kirkhoff’s Voltage Law can be derived for the circuit of 
Fig. 2 by integrating Faraday’s Law, 
 

 0)( =+ RI
dt
LId

, (1) 

 
expanding to 
 

 0)( =++ IRLIL , (2) 

 
and integrating to yield the so-called Generator Equation: 
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 Eq. (2) shows that current amplification ( 0>I ) can 
only occur if the magnitude of the time derivative of the 
inductance (negative quantity) is greater than the total 
series resistance. Assuming that the inductance and 
resistance are known (calculable), then Eq. (3) gives the 

instantaneous flux, which, when divided by the total 
(generator plus load) inductance, gives the instantaneous 
current. Fig. 3 shows the time-dependent inductance and 
current amplification corresponding to the FCG in Fig. 1. 
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Figure 3.  Time-dependent FCG inductance and 
associated current amplification. The times shown 
correspond to the times marked in Fig. 1. 
 
 The problem with the Generator Equation is that when 
modelers have used their best estimates of inductance and 
resistance, they have invariably over-predicted peak 
currents—typically by a factor of two or more. In order to 
bring the calculated peak currents into agreement with 
experimental data, they have done things such as 
artificially increase the load inductance or resistance, 
assumed that the armature does not actually contact the 
stator windings (leaving flux in the gap), imposed some 
internal voltage breakdown limit, or assumed that the 
resistance is just a fixed fraction of dL/dt. In all cases, the 
“correction” has had to be done empirically and changed 
or “tuned” to each generator design, or even to different 
operating parameters for a given design. Indeed, as 
Neuber and Dickens stated in a recent review of FCGs 
[1], “But even if the inductance and resistance are 
accurately calculated, the treatment of the flux, diffused 
into the conductors and only partially recovered for 
further compression, poses a problem such that no a 
priori prediction of HFCG performance can currently be 
made. Merely an educated guess is possible which will 
greatly depend on the experience of the user. This means 
that the user will have to adjust at least one parameter in 
the code that is not based on physical principles but 
merely accounts in a heuristic way for the intrinsic flux 
loss.” 
 In this paper, we show that one does not need to invoke 
any “anomalous” or adjustable flux loss factors to achieve 
agreement with experiment if one can properly 
approximate the rate of flux diffusion into the conductors 
in the vicinity of the armature-stator (a-s) contact point. 
We present, in the next section, the derivation of our 
physics-based contact resistance model (KCRM). The 
final section describes a simple spreadsheet model for the 
Generator Equation, which includes the KCRM, and 
shows comparisons of calculation results to a limited set 
of experimental data. 
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II. KCRM Derivation 
 
A. Basic Notion 
 Along the armature, moving conductive material 
attempts to push ahead the magnetic flux. However, 
because of the finite conductivity, flux also diffuses into 
the armature and the stator. The processes are inherently 
three-dimensional, and generally must be described in the 
magnetohydrodynamic (MHD) sense. However, no 
existing codes can handle the fine zoning required to 
resolve the diffusion regions as well as the large volume 
of the overall problem while including all the important 
physical processes in 3-D. 
 Our approach is rather to examine the diffusion process 
in the contact region, deduce an effective flux diffusion 
rate there, and add the loss rate to the other, more easily 
computed resistances for the rest of the circuit. We 
postulate that there is always a location in the generator, 
which we shall call the critical point, for which most of 
the flux behind diffuses into the conductors, and for 
which most of the flux ahead is advected ahead toward 
the load, as illustrated schematically in Fig. 4. If one can 
determine the flux-per-unit-length in the armature-stator 
gap at the critical point and multiply it by the velocity of 
the critical point, νcp, then that quantity is the effective 
voltage across the generator at that point, and the 
resistance associated with it is just the voltage divided by 
the current. All of the subsequent derivation follows from 
various discussions (and references contained therein) in 
the classic book by Knoepfel [2]. Thus, we must 
determine the location of the critical point, its velocity, 
and the flux-per-unit-length there. 
  

 
Figure 4.  Looking into the gap between stator and 
armature, as it would appear if the stator were unwound. 
The magnetic field is emerging out of the page. The 
dotted line shows the location of the critical point, and the 
shading illustrates, qualitatively, the field magnitude. 
 
 The dimensionless quantity that describes the relative 
importance of flux advection compared to diffusion is the 
Magnetic Reynolds Number, Rm. It is given by the ratio of 
time to move flux over a given distance in vacuum to the 
time to diffuse the flux into a resistive medium through 
the same distance, 
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mR ==
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where the magnetic diffusivity, m/s02.0/ 0 ≈= µηmD  

for copper or aluminum, η is the material resistivity, and 
µ0 is the permeability of free space. For most of the 
generator the a-s gap distances are large and the armature 

expansion velocity is on the order of 103 m/s, so that Rm 
>> 1, and diffusion is relatively unimportant. However, 
when Rm • 1, flux diffuses about as rapidly as it is pushed 
ahead by the moving conductor. 
 
B. Important Relations 
 There will always be some time at a particular axial 
position within the generator (or, equivalently, some 
position in the generator at a time after armature-stator 
contact has first occurred) where the a-s gap distance g 
corresponds to Rm • 1. We therefore set the critical gap 
distance by the Magnetic Reynolds Number, 
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It turns out that critical gap distances are small, of order 
10-4 m. At these gap distances there are strong armature-
stator proximity effects, reducing the importance of 
adjacent wires in the stator, and making the surface fields 
very strong and causing diffusion to be nonlinear. 
 The nonlinear resistivity can be approximated by 
 
 )1(0 Qβηη += , (6) 

 
where η0 is the reference resistivity, Q is the specific 
energy (J/kg), and β is the “temperature” coefficient. 
 Assuming, for now, that the diffusion will be nonlinear, 
we use an expression that relates the specific energy in the 
material at the surface to the magnetic energy density just 
outside the conductors [3], 
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Note that this quantity is • of the usual magnetic energy 
density divided by the material density, which we assume 
is the ambient value. In the same reference [3], the 
nonlinear skin depth is given as 
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where Hs is the surface magnetic field, the characteristic 
field (i.e., the field value for which the surface resistivity 
has doubled from ambient) is given by [3] 
 

 
βµ0
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and the skin layer approximation (approximately valid for 
quasi-exponentially rising fields) for the skin depth is 
given by 
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Here, the effective exponentiation time is approximated 
by 
 

 
⊥

≈≈
v
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H
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s 2τ , (11) 

 
which can be derived form Eq. (12), to follow. Here, v⊥ is 
the gap closure speed. 
 Next, to estimate the field in the gap, we approximate 
the geometry as Cartesian, because ∆r/r is usually very 
small, and assume that the skin depth is also very small, 
because the effective magnetic field time derivative is 
very high as the two conductors approach each other. 
Finally, we assume that the proximity effect due to 
adjacent wires is negligible. We then look for the 
potential solution for the flux density in the gap using a 
conformal transformation for the geometry of Fig. 5. We 
find with these approximations that the vertical 
component of the flux density in the gap is given by 
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where 2222 2)( ggrrgrq www +=−+=  is the square of 

the tangential distance from the armature ‘plane’ to the 
wire surface, rw is the wire radius, and g is the gap 
distance. 

 
Figure 5.  Geometry for approximating the magnetic flux 
density in the a-s gap.  
 
 Equation (12) can be integrated analytically to obtain 
the flux per unit length in the gap. The result is 
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Since g << a, the logarithmic term can be approximated 
by its binomial expansion for simplification. 
 
C. Final Form and Discussion 
 When Eqs. (5)–(13) are combined, we obtain the 
following simplified expression for the magnetic flux per 
unit length of stator winding at the critical point: 
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Here, v∆ is the HE detonation velocity, and α is the 
armature cone half-angle. 
 The total rate of flux diffusion associated with this 
model is approximately the flux per unit length at the 
critical point (Rm = 1) times the contact point velocity, 
since we assume that the critical point velocity, with 
respect to the contact point velocity, is small. The contact 
point velocity for fully developed flow is 
 

 ∆∆ ≈+= nvrnrvv sscp ππ 21)2( 2

. (15) 
 
Here, rs is the coil inside major radius and n is the inverse 
coil pitch (turns per unit length). 
 We finally obtain, with the aforementioned 
assumptions, the (simplified) analytic form for the 
nonlinear contact resistance: 
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 Equation (16) shows that the contact point resistance is 
intrinsically nonlinear and scales as the square root of the 
current. It depends only weakly on the material properties 
and the armature cone expansion angle. The expression 
can be generalized to accommodate different armature 
and stator materials, as well as include the limiting low 
current case. 
 
 

III. Calculations and Comparison to 
Experiment 

 
A. Spreadsheet Model 
 In order to test the KCRM, we set up a relatively simple 
spreadsheet computational model. The time-dependent 
generator inductance is calculated off-line using a 
generalization of a formula in Smythe [4], and the 
resulting table is imported into the spreadsheet. We 
assume that all resistance in the circuit, except the contact 
resistance, is linear and given by the product of resistivity 
and conductor length, and divided by cross-sectional area. 
In the following, we show the effects of different forms of 
the resistance. We use the skin layer approximation for 
the penetration of the current into the conductors, as in 
Eq. (10). For the stator, we also include a proximity factor 
[5]. The contact resistance (Eq. (16)) is added to obtain 
the total resistance, and Eq. (1) is integrated explicitly. 
 
B. Results 
 To illustrate the effect of resistance on calculated 
generator performance, we use a very simple helical 
generator, the TTU-1 [6]. The generator consists of a 32-
turn stator winding of insulated 12 AWG copper wire 

rw q 

g x

y 

B 
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with a pitch of 3 mm, for an overall length of 96 mm. Its 
inside radius is 38 mm. The armature is made of either 
aluminum or copper with outer radius of 19 mm and wall 
thickness of either 2 mm or 3 mm. The interior is packed 
with C-4 explosive with detonation speed approximately 
8200 m/s. For the calculations, we assumed an expansion 
cone half-angle of 13.5˚. The load inductance was 46 nH. 
 Figure 6 shows the results of calculations for the time-
dependent linear (constant resistivity) resistance of the 
generator. Of course, if the generator is "lossless" there is 
no resistance. Next, we show the case of dc stator 
resistance only ("Rs0"). This resistance is proportional to 
the instantaneous stator length (i.e., ahead of the contact 
point). In fact, all of the linear resistance approximations 
have this direct length dependence. The next curve 
("Rs0+Ra0") adds in the dc armature resistance, which 
takes into consideration variable armature radius and 
thickness in the expansion region. The next curve 
("Rs0+Ra1") includes an estimate of the effects of initial 
armature shock heating and plastic work heating during 
expansion [7]. These effects are seen to be relatively 
small. The next curve ("skin") includes the dynamic skin 
effect. The current is assumed to be constant over a depth 
given by Eq. (10), where the time constant τ is 

approximated by the instantaneous value of II . The next 

curve ("skin+pe") adds in an estimate of the wire-to-wire 
proximity effect for the stator [5]. Both the skin and 
proximity effects are seen to be rather significant. 
 The curve designated "gf" represents a non-physical 
resistance based on a constant fraction of the generator 
inductance time derivative. The constant was adjusted to 
give the same peak current as was obtained 
experimentally. It is seen to be much greater than the 
estimates of the linear resistances, underscoring their 
inability to account for the actual generator losses.  
 For reference, the uppermost curve ("-L-dot") shows 
the instantaneous rate of inductance change for the 
generator. Note that it is quite large, leading to large ideal 
current amplification, and that it exceeds the previous 
resistances at all times. 
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Figure 6.  Summary of resistance calculations for the 
TTU-1 generator. 
 
 The final curve, "skin+pe+cp," includes the resistance 
associated with the nonlinear diffusion in the vicinity of 

the contact point as described in the previous section. 
Since its value implicitly depends on current, we chose an 
initial current of 5 kA for this calculation. One can see 
that its incremental value increases in time after it starts 
when a-s contact first occurs. It is initially a relatively 
small fraction of the total resistance, but since the other 
components are monotonically decreasing with time, its 
relative importance increases. In fact, unlike the resistance 
without this component, the total resistance with the 
contact resistance eventually equals dL/dt before the end 
of generator operation. Remember that from Eq. (2), 
current amplification ceases when this occurs. 
 In Fig. 7, we show the effect of the previously 
presented resistances on estimation of current. The graph 
shows the calculated currents, with and without inclusion 
of the contact resistance, for a variety of seed currents. 
One can see from the figure that inclusion of the relatively 
small contact resistance dramatically changes the 
calculated peak current. The lowest seed current case, 2 
kA, where nonlinear effects are not predicted, exhibits a 
reduction of the peak current by approximately a factor of 
three, and the reduction factor increases for increasing 
seed current. 
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Figure 7.  Effect of contact resistance on calculated TTU-
1 generator currents. 
 
 Figure 8 shows a summary of the TTU-1 spreadsheet 
calculation results compared to the published 
experimental data. Again, there was no empirical 
adjustment of any circuit parameters in these calculations. 
For reference we show the prediction for peak current 
scaling for both ideal and best linear resistance cases. The 
agreement is quite good, and would perhaps been even 
better had we been able to include nonlinear diffusion 
throughout the generator and stator deformation due to 
magnetic pressure [8]. 
 We conclude this section with a comparison of the new 
model calculations with detailed data for a medium-sized 
FCG operated at modest parameters [9]. While still a 
simple design, this generator represents the limit of the 
capability of the spreadsheet model described above, and 
in fact the spreadsheet algorithm for the total resistance, 
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Figure 8.  Summary of calculations of peak current and 
comparison to experimental data for the TTU-1 FCG. The 
triangles are experimental data points, the thin continuous 
line is the present calculation including contact resistance. 
The two straight lines represent the ideal (lossless) case 
and the best linear resistance estimate without the contact 
contribution. 
 
including contact resistance, was imported into 
MathCad™ for this calculation. However, the contact 
resistance model was not changed in any way. Figure 9 
shows a comparison of the current as calculated with the 
model to current from two different Rogowski coil 
measurements. The similarity of the two independent 
measurement curves indicates the integrity of the FCG 
operation and measurement technique. The model 
calculations essentially overlay both traces. An even more 
stringent comparison, of the current time derivative, is 
shown in Fig. 10. Again, the degree of agreement between 
experiment and model is excellent. 
 
 

IV. SUMMARY 
 
 We have described a new model for the resistance 
associated with the armature-stator contact point in helical 
flux compression generators. The model is based on 
analytic approximations to the nonlinear diffusion of 
fields in the gap at a critical point, behind which all of the 
flux is assumed to diffuse into the conductors rather than 
advect forward toward the load. The model shows that 
because of the inherent nonlinearity of the diffusion 
process, the effective contact resistance scales as the 
square root of the instantaneous current and depends only 
weakly on generator material properties. Incorporation of 
the model into a simple spreadsheet program shows that 
while the contact resistance is small, its value increases 
while the usual armature and stator resistance values 
decrease. Eventually, it not only dominates the total 
resistance, but also becomes equal in magnitude to the 
generator inductance derivative, thus limiting the peak 
gain. The model has shown excellent agreement with peak 
versus seed current scaling for a small, simple FCG, as 
well as with detailed current and current derivative for a 
medium-size generator. 
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Figure 9.  Comparison of FCG current measured with 
armature and load Rogowski coils to model calculation. 
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Figure 10.  Comparison of current time derivative for Fig. 
9. The calculation is the smooth curve. 
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